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Gentlemen, I thank you for the invitation to present my first essay to the Kit Kat club.  When I 

was invited to join this august group, I was drawn first to the quality of its membership, and to its 

commitment to thoughtful, intellectual discourse.  What intrigued me most was the essay, and 

the idea that the subject of that essay is to be in an area outside of the gentlemen’s expertise.  I 

had found a group of like-minded dilatants (which I do not consider an insult but, as it was in the 

18
th

 century, a term of high praise!)  Because I am an historian by profession, I suppose this bars 

me from making a presentation about history.  I note that so many of you, when giving your 

essays, usually light upon historical topics; there are so many “history buffs” in this group!  As it 

turns out, I am a “mathematics buff,” and so tonight, I and would like to explore with you one of 

my favorite mathematical objects.   

Let me first begin with an equation, which I promise is the only one you will encounter this 

evening, for indeed it is the only one we need: 

z = z
2
 + C 

What this means is that we will take a number (z),  square that number and then add a constant.  

That’s it.  This is a simple enough operation, and would not seem to be very interesting at all.  

But this equation is what mathematicians call an “iterated function,” which means that the result 

we get from squaring a number and adding a constant is then used as the new value for z.  We 

then take that new number, square it, add the same constant we used before and get a new result, 

which we then plug back in as the value for z and repeat this process, ad infinitum.  Iterated 

functions have some practical uses, such as studying the dynamics of population growth.  But my 

interest in these equations comes from the interesting patterns that are generated. 

You see, with iterated functions of this type, it is not the results that are particularly interesting.  

What draws our attention are the behaviors of the dynamical system (the dynamism here being 

the iterative process.)  What happens when we plug in a number into this function and iterate it 

lots of times?  What interesting things happen? 

Here’s a simple example of what I mean.  Let’s take our equation and plug in some numbers. 

Let’s start first with 0, and plug that number in as z.  Let’s set our constant C as 1.  We then get 

the following result: 

Z0 = 0
2 

+ 1= 0 + 1 = 1 

We then take the 1 and use this as the new value for z and calculate the result again: 

Z1= 1
2
 + 1 = 1 + 1 = 2 



(By the way, the z-sub number refers to the number of iterations we have conducted.  So z2 

means that this is the second iteration.)  Then we take the 2 and do the same calculation again: 

Z2= 2
2
 + 1 = 4 + 1 = 5 

And again: 

Z3= 5
2
 + 1 = 25 + 1 = 26 

And again: 

Z4= 26
2
 + 1 = 676 + 1 = 677 

And again: 

Z5=677
2
 + 1 = 458329 + 1 = 458330 

And so on. 

What have we learned here?  Again, with iterated functions we are less interested in the results as 

we are in the “behavior” of the system, in this case, the behavior that this equation exhibits when 

z = 0  and when our constant is 1.  We learn that very quickly, after only five iterations, our 

results are heading off toward infinity.  The next iteration, were I to actually calculate it, would 

have been an even larger number, and the one after that even larger.  Clearly, this equation, 

under these starting conditions, is heading toward infinity.    

Now let’s plug in different numbers and see what happens.  Let’s keep z = 0 but this time let’s 

set our constant at 0 as well.  It should be apparent that such an iteration would always yield the 

result 0, since:  

Z0 = 0
2 

+ 0= 0 + 0 = 0 

Z1= 0
2 

+ 0= 0 + 0 = 0 

Z2= 0
2 

+ 0= 0 + 0 = 0 

Mathematicians would say that, under these conditions, our results “orbit at 0,” meaning that our 

iterated results will always settle around that number.   

Now let’s set our constant at -1.   Here’s what happens: 

Z0 = 0
2 

- 1= 0 - 1 = -1 

Z1= -1
2
 - 1 = 1 - 1 = 0 

Z2= 0
2 

- 1= 0 - 1 = -1 



Z3= -1
2
 - 1 = 1 - 1 = 0 

Under the conditions z = 0 and c = -1 we see that the orbit flips back and forth between 0 and -1.  

Mathematicians would say that the behavior here is like a cycle between two points, or a “cycle 

of period two.”  In both of these latter cases, the system does not head off to infinity but rather 

settles in around a fixed set of points, which is a very different kind of “behavior” than what we 

encountered in the first case.   

Indeed, if we were to play around with different values for C, we would witness a host of 

different behaviors.  At z = 0 and C = -1.1 we get a cycle like this: 

 

 

At C = -1.3 we get: 

 

 

At C = -1.38 we get: 



 

  

And at C = -1.9 the behavior looks like this: 

 

 

In the cases above, the orbits settle upon a fixed number of points, two, three, five, etc.  In some 

cases, the orbits do not settle upon a fixed number of points but are all over the place, as when C 

= -1.85: 

 

 

In this case, mathematicians would describe this as “chaotic behavior.”  But note that in each of 

these cases, all of the results stay within a fixed boundary or orbit; in other words, the results do 

not head off toward infinity as they did in the first case.  That distinction—between points whose 

iterated behavior head off toward infinity and those that do not—will become very important for 

the kinds of mathematical objects I want to describe below.   



Indeed, were we to take all of those numbers for C and plot them on a number line, we could 

then locate different numbers on that line and note those numbers that, when plugged into the 

equation under the condition z = 0 then that C either goes off to infinity or huddles around an 

orbit, even if it is a chaotic orbit.  On our number line, we would color or otherwise label the 

number 1 differently than we would 0 or -1 or -1.9.  That is, we would want to identify those 

values for C where the number goes off to infinity and those that do not.  Again, we are doing 

this for purposes that will become much, much more interesting in just a moment. 

It should be clear that we would be able to identify a threshold after which our C number heads 

off toward infinity, and numbers on the other side of the threshold which cycle around fixed 

points.  (I haven’t calculated where that threshold is, but it probably hovers somewhere just after 

C = 0)  Similarly, we would do the same kinds of iterations only instead of starting with z = 0 we 

could alter the value of z , say starting with z = 1, and see what results we might get.   

All of the z and C numbers we have been using thus far are called “real numbers,” the kinds of 

numbers we encounter in everyday life.  But mathematicians have discovered (or invented, a 

distinction I want to return to later) other kinds of numbers.  One mathematician in particular 

was interested in iterated functions, indeed in the same iterated function we have been using, 

only rather than using real numbers he plugged in “complex numbers.”  This is Gaston Julia, a 

French mathematician who, as you can see, was oddly-shaped.  (His nose having been lost in the 

First World War, meaning he wore that odd piece of leather over his missing proboscis.)   

 

 

You will soon learn that I am not disparaging Julia his physically odd shape, but am rather 

pointing to the odd shapes he discovered when using complex numbers in this iterated function. 



To understand what Julia had discovered, we must first explain what complex numbers are. A 

complex number is defined as a real number added to an “imaginary number,” and is usually 

written in the following form: 

a + bi 

where a and b are both real numbers, and where i is an “imaginary number.”  You may recall 

from your high school algebra that an imaginary number is identified as the square root of -1.  

Mathematically, you cannot derive the square root of a negative number, but for certain kinds of 

mathematical operations using the square root of a negative number can nevertheless be 

valuable.  So, mathematicians have “invented” this number and given it the symbol i and employ 

it in a variety of situations, including complex numbers.   

So in a complex number, a + bi means that we take a real number (a) and add it to a real number 

(b) multiplied by i.      

We can, of course, identify or plot any real number on a number line:   

 

 

This is elementary school mathematics.  When I want to locate the real number 2, I can easily 

plot this on a number line: 

 

Because a complex number is made up of two parts, a one-dimensional line is insufficient for us 

to locate and plot it.  Instead of a number line, complex numbers are plotted on the “complex 

plane.”   



 

 

The complex plane is made up of one axis that locates the a value in the complex number, and 

another axis that locates the bi portion of the complex number.  So, if we wanted to plot a set of 

complex numbers, it would look like this: 

 

 

 



 

The “complex plane” proves to be vitally important for the mathematical objects I want to 

highlight in this talk.   

Back to Gaston Julia.  Julia wanted to know what would happen when the z and C values in our 

iterated function were complex numbers.  Julia set about calculating the behavior of our iterated 

function z = z
2 
+ C by plugging a complex number for z then selecting another complex number 

for C.  (Julia was undertaking a slightly different set of calculations than what we were engaged 

in previously.  Where we started each iteration a z = 0, Julia was looking at lots of different 

values for z.)  He then moved to another complex number as the starting point for Z but kept the 

same complex number for C.  He then went to another z term, then another, in each case keeping 

the C constant the same complex number.  I am not going to show you the calculations for these 

complex numbers (squaring complex numbers proves to be tricky, but for our purposes the 

calculation, and the results, are less important to us.  Remember, what we want to know is what 

the behavior of the system is under each of these conditions.)  Julia wanted to identify which of 

the complex numbers as z headed off for infinity and which ones settled into an orbit.  On his 

complex plane, Julia colored those points that settled into orbits black and did not color or 

otherwise note the points that went off to infinity.  He then plotted these results out on the 

complex plane, and here’s what he got: 

 



 

 

What you are looking at are the iterated results drawn out on the complex plane.  Any dark spot 

in this diagram means that the complex number at that point (the z value in our iterated function) 

is not going off to infinity.  Remember that Julia was keeping the C constant in each case.  He 

did a number of these calculations using different values for C.  In each case, he plotted each of 

the numbers on the complex plane, looking for those values that did not head off toward infinity.  

By this method, Julia produced a number of what we call “Julia Sets.”  A Julia Set is a set of 

those complex numbers that, in the iterated function z = 
 
z

2
 + C ,  stay within a fixed orbit. 

These shapes are…well, “misshaped.”  Mathematicians refer to these kinds of oddly shaped 

geometries as “monsters,” in that they do not seem to conform to our expectations of Euclidian 

regularity and simplicity.  What are we to make of these odd shapes?  What can they tell us?  

What’s the point of this whole exercise anyway?  In 1918, Julia wrote a 200-page manifesto 

titled “Memoir on iterations of rational functions,” which described his investigations of iterated 

functions using complex numbers on the complex plane.  His work and his misshaped monsters 

drew a flurry of attention from mathematicians and the general public, but were then just as 

quickly forgotten. 

Until the 1970s, when a mathematician at IBM, Benoit Mandelbrot, took up the investigation of 

these odd shapes.  (Mandelbrot’s uncle, himself a mathematician, had urged Mandelbrot to 

explore these now-forgotten monsters.)  Mandelbrot worked at IBM (and Harvard University) 

and, in the 1970s, had access to computers and computing power not available to Julia.  Julia was 



hand-calculating his results. Mandelbrot was able to calculate and iterate many more complex 

numbers than Julia would ever be able to calculate by hand.  In addition, Mandelbrot was 

plotting out his results using computer graphics that were becoming more sophisticated and with 

finer resolution than had been previously seen.    

Mandelbrot was using the same iterative function z = z
2
 + C that we have been using all along.  

Like the first set of examples I showed you, Mandelbrot was interested in iterations that started 

with z = 0.  (Indeed, for the all of the results you will see, z always starts at 0.  Remember, Julia 

was looking at lots of different values for z.)  Like Julia, Mandelbrot was using complex 

numbers as C values.  What Mandelbrot did was to take a complex number, set that number as C, 

iterate it through our function beginning with z = 0, and determining the behavior of the results.   

 

If the iterations yielded behaviors that settled into an orbit, he colored that point in.  So, in the 

above case, when C = -0.1155989 + 0.7639405i, because the iterations stay in an orbit, that point 

would be colored black.  When C = -1.04039 + 0.2509294i, the iterations head off toward 

infinity, and so that point was left blank when plotted on the complex plane.  (Again, I’m not 

going to show you the calculations, because these are complicated.  We are only interested in the 

behavior of the iterated results, and whether or not these head off to infinity or stay in orbit).  

Those complex numbers on the complex plane that settle into orbits when iterated at z = 0 were 

all colored black and are said to be contained within what became known as the Mandelbrot set 

(as in a set of complex numbers). 

As I noted, Mandelbrot had access to computing power that Julia did not.  Here is the result of 

the first set of plots, composed on a computer in 1978: 



 

Again, each of those points represent points on the complex plane that, when iterated in our 

function, settle into orbits and do not head off to infinity.  The shape is as “misshapen” as those 

identified by Julia in that it does not look like a perfect circle or square or parabola.  But there is 

clearly something else happening here, there is some sort of interesting pattern or underlying 

order that seems worthwhile to explore. 

Indeed, as Mandelbrot employed more powerful computers with higher resolution graphics, it 

became clear that the results were more interesting than anyone could have imagined.  Here is 

the Mandelbrot set plotted using better resolution graphics (with the complex plane included): 



 

 

Under these conditions, some interesting behaviors become apparent.  First of all, we note that 

the set of those complex numbers that settle into orbits adheres to a heart-shaped “bulb.”  But 

what also becomes clear is that that bulb has “branches” that seem to replicate that heart shape.  

Indeed, if we were to zoom in on one of those branches, we would see a shape that looks very 

similar to the larger overall shape.  This property is called “self-similarity at scale,” meaning that 

the same or similar shape can be found at whatever scale we might be located at in the object.  

Think of the branching pattern in a fern that looks very similar when we descend down into an 

individual branch, and then down even further at the level of individual fronds.  



 

 Or think about the self-similarity we might see in a stalk of cauliflower.  This kind of self-

similarity at scale is something we find in nature all the time, but very rarely in our Euclidean 

geometric formulations.  

Up until this point, we have been ignoring those points that head off to infinity.  But it turns out 

that plotting those complex numbers yields very interesting results.  Using the kinds of computer 

graphics now available in the early 1980s, it was possible to plot out more numbers in an array of 

colors.  We can take the step of looking at those C points that head off to infinity, and note 

especially the rate at which these numbers headed off to infinity.  So, if the iterations rapidly 

headed off to infinity, we give it one color.  The slower the rate, we use a different color. As I 

noted in my real number line example, it should be possible to locate a “threshold” between 

those points that settle in orbits and those points that head off toward infinity.  It turns out that 

when you look for that “threshold” between those points in the Mandelbrot set and those outside 

the set, you get some of the most stunning vistas ever witnessed anywhere on the planet.  

Powerful computer graphics allow us to “zoom in” to deeper and deeper levels of the Mandelbrot 

set: 

 























 

 

The mathematicians who first “explored” this area of the set referred to it as “Seahorse Valley,” 

obviously named after the interesting patterns produced there.  Indeed, using complex computer 

graphics, smaller and smaller regions of the Mandelbrot set could be explored, in the same way 

we might explore the ocean depths.  Those explorers were afforded the privileged of “naming” 

such regions of the Set, the way other explorers have named the landforms they discovered.   

Even at the great depths of Seahorse Valley, note that the “heart-shaped bulb” appears.  Indeed, 

that shape appears all over the Mandelbrot set, turning up unexpectedly at whatever depth you 

wish to consider. 

By the way, those same computer graphics can now be used to plot the Julia Sets that Gaston 

Julia could not easily calculate or plot out in 1918.  When we do so, here’s what we get: 



 

C = -0.765 + 0.003i 

There are many Julia Sets, each plotting those points on the complex plane that remain in orbit 

under the iterated function z = z
2
 + C When we change the C value, we produce a new Julia Set. 

 

c=-0.74543+0.11301i 

 



 

c= -0.75+0.11i 

 

c=-0.1+0.651i 

 

Julia’s monsters seem less monstrous when we plot them in this fashion.  I cannot emphasize 

enough that without the development of computer graphics we probably never would have 

unleashed the beauty and complexity of Julia Sets and the Mandelbrot set. We would have never 

been able to see—and thereby explore--these mathematical objects.     

What had Mandelbrot discovered?  (Or was it “created?”)  Galileo is supposed to have said “The 

Book of Nature is written in the language of mathematics,” and indeed we often assume that 

mathematics is useful (beyond calculating sums) as a way for us to better understand the natural 

world.   The Fibonacci Sequence is interesting to us because that ratio of numbers 



(1,1,2,3,5,8,13,21) has a specific relationship to the Golden Mean, and when arranged 

geometrically very well describes certain natural forms, like nautilus shells and sunflowers.   

  

  

 

 

The photographer (and mathematician) Nikki Graziano displays this impulse to see mathematical 

forms in the world around us.  But note how Graziano’s equations have “smoothed out” the 

scenes.  That is her equations do not align to the shapes she has photographed; the equations are 

approximations of those shapes.   

 



           

           

 

The Mandelbrot set does not appear to map onto anything in nature, but nevertheless looks very 

“naturalistic.”  Indeed, for his part Mandelbrot claimed to have discovered the mathematical 

principles of what he termed “roughness.” Some of the mathematics behind the Mandelbrot set 

was immediately grasped by computer graphics people, as a way to render more realistic and 

natural looking graphics for computer games.  Mandelbrot claimed to have developed 

mathematics that more closely maps the rough contours of the natural world that equations such 

as Graziano’s smooth away.   

But my own sense is that the Mandelbrot set does not replicate anything specific in nature, and is 

fascinating…simply because it is a fascinating object.  I compare such mathematical objects to 

poems or music.  Jim appreciates poetry for its beauty, Arnett finds complexity in music.  

Mathematical objects like the Mandelbrot set are analogous.  Was the Set conjured in 

Mandelbrot’s imagination like a poem or musical composition?  Or had he discovered a principle 

of the universe, like the complexities of pi, an object that exists somewhere between the natural 

world and the world of our imagination?  Why do numbers behave the way they do?  Are they 



our invention, or part of the substance of the universe?  Mathematical objects seem to hover 

somewhere between, which is why they fascinate me so much.  Mathematics is the science of 

patterns; it is not mere calculation.  The question I have been asking myself for years is “what is 

the meaning of these patterns?”  Are the patterns of number themselves a part of the universe, 

just part of a universe of abstractions that we access not by picking up shells or sunflowers but 

by exploring our imaginations.  The patterns of mathematics reside in the imagination, and form 

their own kind of universe. 

Mathematicians have described the Mandelbrot set as the most complex mathematical object in 

the universe.  And remember, it is derived from the simplest of equations:  

z = z
2
 + C 


